TSTP Solution File: NLP003^7 by cocATP---0.2.0

View Problem - Process Solution

%------------------------------------------------------------------------------
% File     : cocATP---0.2.0
% Problem  : NLP003^7 : TPTP v6.1.0. Released v5.5.0.
% Transfm  : none
% Format   : tptp:raw
% Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p

% Computer : n188.star.cs.uiowa.edu
% Model    : x86_64 x86_64
% CPU      : Intel(R) Xeon(R) CPU E5-2609 0 2.40GHz
% Memory   : 32286.75MB
% OS       : Linux 2.6.32-431.20.3.el6.x86_64
% CPULimit : 300s
% DateTime : Thu Jul 17 13:26:43 EDT 2014

% Result   : Timeout 300.05s
% Output   : None 
% Verified : 
% SZS Type : None (Parsing solution fails)
% Syntax   : Number of formulae    : 0

% Comments : 
%------------------------------------------------------------------------------
%----NO SOLUTION OUTPUT BY SYSTEM
%------------------------------------------------------------------------------
%----ORIGINAL SYSTEM OUTPUT
% % Problem  : NLP003^7 : TPTP v6.1.0. Released v5.5.0.
% % Command  : python CASC.py /export/starexec/sandbox/benchmark/theBenchmark.p
% % Computer : n188.star.cs.uiowa.edu
% % Model    : x86_64 x86_64
% % CPU      : Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
% % Memory   : 32286.75MB
% % OS       : Linux 2.6.32-431.20.3.el6.x86_64
% % CPULimit : 300
% % DateTime : Thu Jul 17 07:25:06 CDT 2014
% % CPUTime  : 300.05 
% Python 2.7.5
% Using paths ['/home/cristobal/cocATP/CASC/TPTP/', '/export/starexec/sandbox/benchmark/', '/export/starexec/sandbox/benchmark/']
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL015^0.ax, trying next directory
% FOF formula (<kernel.Constant object at 0x226cd40>, <kernel.Type object at 0x226ccf8>) of role type named mu_type
% Using role type
% Declaring mu:Type
% FOF formula (<kernel.Constant object at 0x226cea8>, <kernel.DependentProduct object at 0x226cd40>) of role type named qmltpeq_type
% Using role type
% Declaring qmltpeq:(mu->(mu->(fofType->Prop)))
% FOF formula (<kernel.Constant object at 0x208bef0>, <kernel.DependentProduct object at 0x208be60>) of role type named meq_prop_type
% Using role type
% Declaring meq_prop:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) meq_prop) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W)))) of role definition named meq_prop
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) meq_prop) (fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W))))
% Defined: meq_prop:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W)))
% FOF formula (<kernel.Constant object at 0x208b950>, <kernel.DependentProduct object at 0x208b710>) of role type named mnot_type
% Using role type
% Declaring mnot:((fofType->Prop)->(fofType->Prop))
% FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mnot) (fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False))) of role definition named mnot
% A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mnot) (fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False)))
% Defined: mnot:=(fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False))
% FOF formula (<kernel.Constant object at 0x208b710>, <kernel.DependentProduct object at 0x208b320>) of role type named mor_type
% Using role type
% Declaring mor:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W)))) of role definition named mor
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W))))
% Defined: mor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W)))
% FOF formula (<kernel.Constant object at 0x208b320>, <kernel.DependentProduct object at 0x208b8c0>) of role type named mbox_type
% Using role type
% Declaring mbox:((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mbox) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V))))) of role definition named mbox
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mbox) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V)))))
% Defined: mbox:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V))))
% FOF formula (<kernel.Constant object at 0x208b8c0>, <kernel.DependentProduct object at 0x208bdd0>) of role type named mforall_prop_type
% Using role type
% Declaring mforall_prop:(((fofType->Prop)->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mforall_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W)))) of role definition named mforall_prop
% A new definition: (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mforall_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W))))
% Defined: mforall_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W)))
% FOF formula (<kernel.Constant object at 0x208bcb0>, <kernel.DependentProduct object at 0x208bea8>) of role type named mtrue_type
% Using role type
% Declaring mtrue:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) mtrue) (fun (W:fofType)=> True)) of role definition named mtrue
% A new definition: (((eq (fofType->Prop)) mtrue) (fun (W:fofType)=> True))
% Defined: mtrue:=(fun (W:fofType)=> True)
% FOF formula (<kernel.Constant object at 0x208b8c0>, <kernel.DependentProduct object at 0x208b710>) of role type named mfalse_type
% Using role type
% Declaring mfalse:(fofType->Prop)
% FOF formula (((eq (fofType->Prop)) mfalse) (mnot mtrue)) of role definition named mfalse
% A new definition: (((eq (fofType->Prop)) mfalse) (mnot mtrue))
% Defined: mfalse:=(mnot mtrue)
% FOF formula (<kernel.Constant object at 0x208bb00>, <kernel.DependentProduct object at 0x208bcb0>) of role type named mand_type
% Using role type
% Declaring mand:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mand) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi))))) of role definition named mand
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mand) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi)))))
% Defined: mand:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi))))
% FOF formula (<kernel.Constant object at 0x208bcb0>, <kernel.DependentProduct object at 0x208b710>) of role type named mimplies_type
% Using role type
% Declaring mimplies:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplies) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi))) of role definition named mimplies
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplies) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi)))
% Defined: mimplies:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi))
% FOF formula (<kernel.Constant object at 0x208b320>, <kernel.DependentProduct object at 0x2081830>) of role type named mimplied_type
% Using role type
% Declaring mimplied:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplied) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi))) of role definition named mimplied
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mimplied) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi)))
% Defined: mimplied:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi))
% FOF formula (<kernel.Constant object at 0x208b320>, <kernel.DependentProduct object at 0x20815a8>) of role type named mequiv_type
% Using role type
% Declaring mequiv:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mequiv) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi)))) of role definition named mequiv
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mequiv) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi))))
% Defined: mequiv:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi)))
% FOF formula (<kernel.Constant object at 0x208b320>, <kernel.DependentProduct object at 0x2081638>) of role type named mxor_type
% Using role type
% Declaring mxor:((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mxor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi)))) of role definition named mxor
% A new definition: (((eq ((fofType->Prop)->((fofType->Prop)->(fofType->Prop)))) mxor) (fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi))))
% Defined: mxor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi)))
% FOF formula (<kernel.Constant object at 0x2081638>, <kernel.DependentProduct object at 0x20815a8>) of role type named mdia_type
% Using role type
% Declaring mdia:((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))
% FOF formula (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mdia) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi))))) of role definition named mdia
% A new definition: (((eq ((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop)))) mdia) (fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi)))))
% Defined: mdia:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi))))
% FOF formula (<kernel.Constant object at 0x2081638>, <kernel.DependentProduct object at 0x2081908>) of role type named exists_in_world_type
% Using role type
% Declaring exists_in_world:(mu->(fofType->Prop))
% FOF formula (forall (V:fofType), ((ex mu) (fun (X:mu)=> ((exists_in_world X) V)))) of role axiom named nonempty_ax
% A new axiom: (forall (V:fofType), ((ex mu) (fun (X:mu)=> ((exists_in_world X) V))))
% FOF formula (<kernel.Constant object at 0x2081248>, <kernel.DependentProduct object at 0x2081290>) of role type named mforall_ind_type
% Using role type
% Declaring mforall_ind:((mu->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mforall_ind) (fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), (((exists_in_world X) W)->((Phi X) W))))) of role definition named mforall_ind
% A new definition: (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mforall_ind) (fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), (((exists_in_world X) W)->((Phi X) W)))))
% Defined: mforall_ind:=(fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), (((exists_in_world X) W)->((Phi X) W))))
% FOF formula (<kernel.Constant object at 0x2081680>, <kernel.DependentProduct object at 0x2081128>) of role type named mexists_ind_type
% Using role type
% Declaring mexists_ind:((mu->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mexists_ind) (fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X))))))) of role definition named mexists_ind
% A new definition: (((eq ((mu->(fofType->Prop))->(fofType->Prop))) mexists_ind) (fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X)))))))
% Defined: mexists_ind:=(fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X))))))
% FOF formula (<kernel.Constant object at 0x2081128>, <kernel.DependentProduct object at 0x2081488>) of role type named mexists_prop_type
% Using role type
% Declaring mexists_prop:(((fofType->Prop)->(fofType->Prop))->(fofType->Prop))
% FOF formula (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mexists_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P))))))) of role definition named mexists_prop
% A new definition: (((eq (((fofType->Prop)->(fofType->Prop))->(fofType->Prop))) mexists_prop) (fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P)))))))
% Defined: mexists_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P))))))
% FOF formula (<kernel.Constant object at 0x2081290>, <kernel.DependentProduct object at 0x2081c20>) of role type named mreflexive_type
% Using role type
% Declaring mreflexive:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mreflexive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S)))) of role definition named mreflexive
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mreflexive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S))))
% Defined: mreflexive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S)))
% FOF formula (<kernel.Constant object at 0x2081c20>, <kernel.DependentProduct object at 0x2081b90>) of role type named msymmetric_type
% Using role type
% Declaring msymmetric:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) msymmetric) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S))))) of role definition named msymmetric
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) msymmetric) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S)))))
% Defined: msymmetric:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S))))
% FOF formula (<kernel.Constant object at 0x2081b90>, <kernel.DependentProduct object at 0x2081c68>) of role type named mserial_type
% Using role type
% Declaring mserial:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mserial) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T)))))) of role definition named mserial
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mserial) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T))))))
% Defined: mserial:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T)))))
% FOF formula (<kernel.Constant object at 0x2081c68>, <kernel.DependentProduct object at 0x2081758>) of role type named mtransitive_type
% Using role type
% Declaring mtransitive:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mtransitive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U))))) of role definition named mtransitive
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mtransitive) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U)))))
% Defined: mtransitive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U))))
% FOF formula (<kernel.Constant object at 0x2081758>, <kernel.DependentProduct object at 0x2081f80>) of role type named meuclidean_type
% Using role type
% Declaring meuclidean:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) meuclidean) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U))))) of role definition named meuclidean
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) meuclidean) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U)))))
% Defined: meuclidean:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U))))
% FOF formula (<kernel.Constant object at 0x2081f80>, <kernel.DependentProduct object at 0x2081e18>) of role type named mpartially_functional_type
% Using role type
% Declaring mpartially_functional:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mpartially_functional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U))))) of role definition named mpartially_functional
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mpartially_functional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U)))))
% Defined: mpartially_functional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U))))
% FOF formula (<kernel.Constant object at 0x2081e18>, <kernel.DependentProduct object at 0x2081b90>) of role type named mfunctional_type
% Using role type
% Declaring mfunctional:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mfunctional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U))))))))) of role definition named mfunctional
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mfunctional) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U)))))))))
% Defined: mfunctional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U))))))))
% FOF formula (<kernel.Constant object at 0x2081b90>, <kernel.DependentProduct object at 0x2081b00>) of role type named mweakly_dense_type
% Using role type
% Declaring mweakly_dense:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_dense) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T))))))))) of role definition named mweakly_dense
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_dense) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T)))))))))
% Defined: mweakly_dense:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T))))))))
% FOF formula (<kernel.Constant object at 0x2081b00>, <kernel.DependentProduct object at 0x2081dd0>) of role type named mweakly_connected_type
% Using role type
% Declaring mweakly_connected:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_connected) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T)))))) of role definition named mweakly_connected
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_connected) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T))))))
% Defined: mweakly_connected:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T)))))
% FOF formula (<kernel.Constant object at 0x2081dd0>, <kernel.DependentProduct object at 0x2081c20>) of role type named mweakly_directed_type
% Using role type
% Declaring mweakly_directed:((fofType->(fofType->Prop))->Prop)
% FOF formula (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_directed) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V)))))))) of role definition named mweakly_directed
% A new definition: (((eq ((fofType->(fofType->Prop))->Prop)) mweakly_directed) (fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V))))))))
% Defined: mweakly_directed:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V)))))))
% FOF formula (<kernel.Constant object at 0x2081128>, <kernel.DependentProduct object at 0x2081fc8>) of role type named mvalid_type
% Using role type
% Declaring mvalid:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) mvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W)))) of role definition named mvalid
% A new definition: (((eq ((fofType->Prop)->Prop)) mvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W))))
% Defined: mvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W)))
% FOF formula (<kernel.Constant object at 0x2081dd0>, <kernel.DependentProduct object at 0x2081b48>) of role type named msatisfiable_type
% Using role type
% Declaring msatisfiable:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) msatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W))))) of role definition named msatisfiable
% A new definition: (((eq ((fofType->Prop)->Prop)) msatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W)))))
% Defined: msatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W))))
% FOF formula (<kernel.Constant object at 0x2081fc8>, <kernel.DependentProduct object at 0x225a560>) of role type named mcountersatisfiable_type
% Using role type
% Declaring mcountersatisfiable:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) mcountersatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False))))) of role definition named mcountersatisfiable
% A new definition: (((eq ((fofType->Prop)->Prop)) mcountersatisfiable) (fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False)))))
% Defined: mcountersatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False))))
% FOF formula (<kernel.Constant object at 0x2081128>, <kernel.DependentProduct object at 0x225a248>) of role type named minvalid_type
% Using role type
% Declaring minvalid:((fofType->Prop)->Prop)
% FOF formula (((eq ((fofType->Prop)->Prop)) minvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False)))) of role definition named minvalid
% A new definition: (((eq ((fofType->Prop)->Prop)) minvalid) (fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False))))
% Defined: minvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False)))
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL013^5.ax, trying next directory
% FOF formula (<kernel.Constant object at 0x226c5a8>, <kernel.DependentProduct object at 0x226cf38>) of role type named rel_s4_type
% Using role type
% Declaring rel_s4:(fofType->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x226cdd0>, <kernel.DependentProduct object at 0x226cf80>) of role type named mbox_s4_type
% Using role type
% Declaring mbox_s4:((fofType->Prop)->(fofType->Prop))
% FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mbox_s4) (fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_s4 W) V)->False)) (Phi V))))) of role definition named mbox_s4
% A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mbox_s4) (fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_s4 W) V)->False)) (Phi V)))))
% Defined: mbox_s4:=(fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_s4 W) V)->False)) (Phi V))))
% FOF formula (<kernel.Constant object at 0x226cf80>, <kernel.DependentProduct object at 0x226c320>) of role type named mdia_s4_type
% Using role type
% Declaring mdia_s4:((fofType->Prop)->(fofType->Prop))
% FOF formula (((eq ((fofType->Prop)->(fofType->Prop))) mdia_s4) (fun (Phi:(fofType->Prop))=> (mnot (mbox_s4 (mnot Phi))))) of role definition named mdia_s4
% A new definition: (((eq ((fofType->Prop)->(fofType->Prop))) mdia_s4) (fun (Phi:(fofType->Prop))=> (mnot (mbox_s4 (mnot Phi)))))
% Defined: mdia_s4:=(fun (Phi:(fofType->Prop))=> (mnot (mbox_s4 (mnot Phi))))
% FOF formula (mreflexive rel_s4) of role axiom named a1
% A new axiom: (mreflexive rel_s4)
% FOF formula (mtransitive rel_s4) of role axiom named a2
% A new axiom: (mtransitive rel_s4)
% Failed to open /home/cristobal/cocATP/CASC/TPTP/Axioms/LCL015^1.ax, trying next directory
% FOF formula (forall (X:mu) (V:fofType) (W:fofType), (((and ((exists_in_world X) V)) ((rel_s4 V) W))->((exists_in_world X) W))) of role axiom named cumulative_ax
% A new axiom: (forall (X:mu) (V:fofType) (W:fofType), (((and ((exists_in_world X) V)) ((rel_s4 V) W))->((exists_in_world X) W)))
% FOF formula (<kernel.Constant object at 0x2070bd8>, <kernel.DependentProduct object at 0x2070a70>) of role type named vehicle_type
% Using role type
% Declaring vehicle:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20705a8>, <kernel.DependentProduct object at 0x2070cb0>) of role type named transport_type
% Using role type
% Declaring transport:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20706c8>, <kernel.DependentProduct object at 0x2070bd8>) of role type named instrumentality_type
% Using role type
% Declaring instrumentality:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x2070a70>, <kernel.DependentProduct object at 0x20705a8>) of role type named artifact_type
% Using role type
% Declaring artifact:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x2070cb0>, <kernel.DependentProduct object at 0x20706c8>) of role type named location_type
% Using role type
% Declaring location:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x2070bd8>, <kernel.DependentProduct object at 0x2070a70>) of role type named object_type
% Using role type
% Declaring object:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20705a8>, <kernel.DependentProduct object at 0x2070cb0>) of role type named new_type
% Using role type
% Declaring new:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20706c8>, <kernel.DependentProduct object at 0x2070bd8>) of role type named eventuality_type
% Using role type
% Declaring eventuality:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x2070a70>, <kernel.DependentProduct object at 0x20705a8>) of role type named abstraction_type
% Using role type
% Declaring abstraction:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x2070cb0>, <kernel.DependentProduct object at 0x20706c8>) of role type named man_type
% Using role type
% Declaring man:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x2070bd8>, <kernel.DependentProduct object at 0x2070a70>) of role type named male_type
% Using role type
% Declaring male:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20705a8>, <kernel.DependentProduct object at 0x1f53d40>) of role type named female_type
% Using role type
% Declaring female:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20706c8>, <kernel.DependentProduct object at 0x1f53d40>) of role type named woman_type
% Using role type
% Declaring woman:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20705f0>, <kernel.DependentProduct object at 0x1f53d40>) of role type named proposition_type
% Using role type
% Declaring proposition:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x2070ea8>, <kernel.DependentProduct object at 0x1f53d40>) of role type named drs_type
% Using role type
% Declaring drs:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20707e8>, <kernel.DependentProduct object at 0x20706c8>) of role type named entity_type
% Using role type
% Declaring entity:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x1f53dd0>, <kernel.DependentProduct object at 0x231e878>) of role type named owner_type
% Using role type
% Declaring owner:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20705f0>, <kernel.DependentProduct object at 0x231e908>) of role type named human_type
% Using role type
% Declaring human:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x20705a8>, <kernel.DependentProduct object at 0x231eb00>) of role type named nonhuman_type
% Using role type
% Declaring nonhuman:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x2070a70>, <kernel.DependentProduct object at 0x2070bd8>) of role type named have_type
% Using role type
% Declaring have:(mu->(mu->(mu->(fofType->Prop))))
% FOF formula (<kernel.Constant object at 0x20705f0>, <kernel.DependentProduct object at 0x231eb00>) of role type named of_type
% Using role type
% Declaring of:(mu->(mu->(fofType->Prop)))
% FOF formula (<kernel.Constant object at 0x2070bd8>, <kernel.DependentProduct object at 0x231eb00>) of role type named partof_type
% Using role type
% Declaring partof:(mu->(mu->(fofType->Prop)))
% FOF formula (<kernel.Constant object at 0x20705f0>, <kernel.DependentProduct object at 0x231e878>) of role type named in_type
% Using role type
% Declaring in:(mu->(mu->(fofType->Prop)))
% FOF formula (<kernel.Constant object at 0x2070bd8>, <kernel.DependentProduct object at 0x226c0e0>) of role type named down_type
% Using role type
% Declaring down:(mu->(mu->(fofType->Prop)))
% FOF formula (<kernel.Constant object at 0x2070bd8>, <kernel.DependentProduct object at 0x226cc68>) of role type named barrel_type
% Using role type
% Declaring barrel:(mu->(mu->(fofType->Prop)))
% FOF formula (<kernel.Constant object at 0x231efc8>, <kernel.DependentProduct object at 0x226cc68>) of role type named lonely_type
% Using role type
% Declaring lonely:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x231e878>, <kernel.DependentProduct object at 0x226c098>) of role type named way_type
% Using role type
% Declaring way:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x231efc8>, <kernel.DependentProduct object at 0x226c170>) of role type named street_type
% Using role type
% Declaring street:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x231efc8>, <kernel.DependentProduct object at 0x226c320>) of role type named old_type
% Using role type
% Declaring old:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x226c098>, <kernel.DependentProduct object at 0x226c128>) of role type named dirty_type
% Using role type
% Declaring dirty:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x226c170>, <kernel.DependentProduct object at 0x226cd88>) of role type named white_type
% Using role type
% Declaring white:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x226c320>, <kernel.DependentProduct object at 0x226c098>) of role type named car_type
% Using role type
% Declaring car:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x226c128>, <kernel.DependentProduct object at 0x226c170>) of role type named chevy_type
% Using role type
% Declaring chevy:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x226cd88>, <kernel.DependentProduct object at 0x226c320>) of role type named event_type
% Using role type
% Declaring event:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x226c098>, <kernel.DependentProduct object at 0x226c128>) of role type named city_type
% Using role type
% Declaring city:(mu->(fofType->Prop))
% FOF formula (<kernel.Constant object at 0x226c170>, <kernel.DependentProduct object at 0x226cd88>) of role type named hollywood_type
% Using role type
% Declaring hollywood:(mu->(fofType->Prop))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> ((qmltpeq X) X)))) of role axiom named reflexivity
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> ((qmltpeq X) X))))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((qmltpeq X) Y)) ((qmltpeq Y) X))))))) of role axiom named symmetry
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((qmltpeq X) Y)) ((qmltpeq Y) X)))))))
% FOF formula (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> (mforall_ind (fun (Z:mu)=> ((mimplies ((mand ((qmltpeq X) Y)) ((qmltpeq Y) Z))) ((qmltpeq X) Z))))))))) of role axiom named transitivity
% A new axiom: (mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> (mforall_ind (fun (Z:mu)=> ((mimplies ((mand ((qmltpeq X) Y)) ((qmltpeq Y) Z))) ((qmltpeq X) Z)))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (abstraction A))) (abstraction B))))))) of role axiom named abstraction_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (abstraction A))) (abstraction B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (artifact A))) (artifact B))))))) of role axiom named artifact_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (artifact A))) (artifact B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((barrel A) C))) ((barrel B) C))))))))) of role axiom named barrel_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((barrel A) C))) ((barrel B) C)))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((barrel C) A))) ((barrel C) B))))))))) of role axiom named barrel_substitution_2
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((barrel C) A))) ((barrel C) B)))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (car A))) (car B))))))) of role axiom named car_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (car A))) (car B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (chevy A))) (chevy B))))))) of role axiom named chevy_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (chevy A))) (chevy B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (city A))) (city B))))))) of role axiom named city_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (city A))) (city B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (dirty A))) (dirty B))))))) of role axiom named dirty_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (dirty A))) (dirty B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((down A) C))) ((down B) C))))))))) of role axiom named down_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((down A) C))) ((down B) C)))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((down C) A))) ((down C) B))))))))) of role axiom named down_substitution_2
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((down C) A))) ((down C) B)))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (drs A))) (drs B))))))) of role axiom named drs_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (drs A))) (drs B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (entity A))) (entity B))))))) of role axiom named entity_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (entity A))) (entity B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (event A))) (event B))))))) of role axiom named event_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (event A))) (event B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (eventuality A))) (eventuality B))))))) of role axiom named eventuality_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (eventuality A))) (eventuality B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (female A))) (female B))))))) of role axiom named female_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (female A))) (female B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> (mforall_ind (fun (D:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (((have A) C) D))) (((have B) C) D))))))))))) of role axiom named have_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> (mforall_ind (fun (D:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (((have A) C) D))) (((have B) C) D)))))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> (mforall_ind (fun (D:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (((have C) A) D))) (((have C) B) D))))))))))) of role axiom named have_substitution_2
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> (mforall_ind (fun (D:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (((have C) A) D))) (((have C) B) D)))))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> (mforall_ind (fun (D:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (((have C) D) A))) (((have C) D) B))))))))))) of role axiom named have_substitution_3
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> (mforall_ind (fun (D:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (((have C) D) A))) (((have C) D) B)))))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (hollywood A))) (hollywood B))))))) of role axiom named hollywood_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (hollywood A))) (hollywood B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (human A))) (human B))))))) of role axiom named human_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (human A))) (human B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((in A) C))) ((in B) C))))))))) of role axiom named in_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((in A) C))) ((in B) C)))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((in C) A))) ((in C) B))))))))) of role axiom named in_substitution_2
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((in C) A))) ((in C) B)))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (instrumentality A))) (instrumentality B))))))) of role axiom named instrumentality_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (instrumentality A))) (instrumentality B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (location A))) (location B))))))) of role axiom named location_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (location A))) (location B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (lonely A))) (lonely B))))))) of role axiom named lonely_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (lonely A))) (lonely B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (male A))) (male B))))))) of role axiom named male_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (male A))) (male B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (man A))) (man B))))))) of role axiom named man_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (man A))) (man B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (new A))) (new B))))))) of role axiom named new_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (new A))) (new B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (nonhuman A))) (nonhuman B))))))) of role axiom named nonhuman_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (nonhuman A))) (nonhuman B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (object A))) (object B))))))) of role axiom named object_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (object A))) (object B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((of A) C))) ((of B) C))))))))) of role axiom named of_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((of A) C))) ((of B) C)))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((of C) A))) ((of C) B))))))))) of role axiom named of_substitution_2
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((of C) A))) ((of C) B)))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (old A))) (old B))))))) of role axiom named old_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (old A))) (old B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (owner A))) (owner B))))))) of role axiom named owner_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (owner A))) (owner B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((partof A) C))) ((partof B) C))))))))) of role axiom named partof_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((partof A) C))) ((partof B) C)))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((partof C) A))) ((partof C) B))))))))) of role axiom named partof_substitution_2
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((partof C) A))) ((partof C) B)))))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (proposition A))) (proposition B))))))) of role axiom named proposition_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (proposition A))) (proposition B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (street A))) (street B))))))) of role axiom named street_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (street A))) (street B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (transport A))) (transport B))))))) of role axiom named transport_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (transport A))) (transport B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (vehicle A))) (vehicle B))))))) of role axiom named vehicle_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (vehicle A))) (vehicle B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (way A))) (way B))))))) of role axiom named way_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (way A))) (way B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (white A))) (white B))))))) of role axiom named white_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (white A))) (white B)))))))
% FOF formula (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (woman A))) (woman B))))))) of role axiom named woman_substitution_1
% A new axiom: (mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (woman A))) (woman B)))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (chevy U)) (car U))))) of role axiom named ax1
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (chevy U)) (car U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (car U)) (vehicle U))))) of role axiom named ax2
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (car U)) (vehicle U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (vehicle U)) (transport U))))) of role axiom named ax3
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (vehicle U)) (transport U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (transport U)) (instrumentality U))))) of role axiom named ax4
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (transport U)) (instrumentality U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (instrumentality U)) (artifact U))))) of role axiom named ax5
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (instrumentality U)) (artifact U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (instrumentality U)) (mnot (way U)))))) of role axiom named ax6
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (instrumentality U)) (mnot (way U))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (street U)) (way U))))) of role axiom named ax7
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (street U)) (way U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (way U)) (artifact U))))) of role axiom named ax8
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (way U)) (artifact U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (artifact U)) (object U))))) of role axiom named ax9
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (artifact U)) (object U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (artifact U)) (mnot (location U)))))) of role axiom named ax10
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (artifact U)) (mnot (location U))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (event U)) (eventuality U))))) of role axiom named ax11
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (event U)) (eventuality U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (hollywood U)) (city U))))) of role axiom named ax12
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (hollywood U)) (city U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (city U)) (location U))))) of role axiom named ax13
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (city U)) (location U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (location U)) (object U))))) of role axiom named ax14
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (location U)) (object U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (object U)) (entity U))))) of role axiom named ax15
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (object U)) (entity U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (old U)) (mnot (new U)))))) of role axiom named ax16
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (old U)) (mnot (new U))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (eventuality U)) (mnot (entity U)))))) of role axiom named ax17
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (eventuality U)) (mnot (entity U))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (abstraction U)) (mnot (entity U)))))) of role axiom named ax18
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (abstraction U)) (mnot (entity U))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (abstraction U)) (mnot (eventuality U)))))) of role axiom named ax19
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (abstraction U)) (mnot (eventuality U))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (male U)) (mnot (female U)))))) of role axiom named ax20
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (male U)) (mnot (female U))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (man U)) (mnot (woman U)))))) of role axiom named ax21
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (man U)) (mnot (woman U))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (man U)) (male U))))) of role axiom named ax22
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (man U)) (male U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (male U)) (human U))))) of role axiom named ax23
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (male U)) (human U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (female U)) (human U))))) of role axiom named ax24
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (female U)) (human U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (woman U)) (female U))))) of role axiom named ax25
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (woman U)) (female U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mequiv (drs U)) (proposition U))))) of role axiom named ax26
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mequiv (drs U)) (proposition U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (nonhuman U)) (entity U))))) of role axiom named ax27
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (nonhuman U)) (entity U)))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (human U)) (mnot (nonhuman U)))))) of role axiom named ax28
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> ((mimplies (human U)) (mnot (nonhuman U))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> (mforall_ind (fun (W:mu)=> ((mequiv ((mand (((have U) V) W)) (human V))) ((mand (owner V)) ((of V) W)))))))))) of role axiom named ax29
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> (mforall_ind (fun (W:mu)=> ((mequiv ((mand (((have U) V) W)) (human V))) ((mand (owner V)) ((of V) W))))))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> (mforall_ind (fun (W:mu)=> ((mimplies ((mand (((have U) V) W)) ((mand (nonhuman V)) (nonhuman W)))) ((partof W) V))))))))) of role axiom named ax30
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> (mforall_ind (fun (W:mu)=> ((mimplies ((mand (((have U) V) W)) ((mand (nonhuman V)) (nonhuman W)))) ((partof W) V)))))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> (mforall_ind (fun (W:mu)=> ((mimplies ((mand (event U)) (((have U) V) W))) ((of V) W))))))))) of role axiom named ax31
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> (mforall_ind (fun (W:mu)=> ((mimplies ((mand (event U)) (((have U) V) W))) ((of V) W)))))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> ((mimplies ((of V) U)) (mexists_ind (fun (W:mu)=> ((mand (event W)) (((have W) U) V)))))))))) of role axiom named ax32
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> ((mimplies ((of V) U)) (mexists_ind (fun (W:mu)=> ((mand (event W)) (((have W) U) V))))))))))
% FOF formula (mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> (mforall_ind (fun (W:mu)=> ((mimplies ((mand ((partof U) V)) ((partof U) W))) ((qmltpeq V) W))))))))) of role axiom named ax33
% A new axiom: (mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> (mforall_ind (fun (W:mu)=> ((mimplies ((mand ((partof U) V)) ((partof U) W))) ((qmltpeq V) W)))))))))
% FOF formula (mvalid (mnot (mexists_ind (fun (U:mu)=> (mexists_ind (fun (V:mu)=> (mexists_ind (fun (W:mu)=> (mexists_ind (fun (X:mu)=> ((mand (hollywood U)) ((mand (city U)) ((mand (event V)) ((mand (chevy W)) ((mand (car W)) ((mand (white W)) ((mand (dirty W)) ((mand (old W)) ((mand (street X)) ((mand (way X)) ((mand (lonely X)) ((mand ((barrel V) W)) ((mand ((down V) X)) ((in V) U)))))))))))))))))))))))) of role conjecture named co1
% Conjecture to prove = (mvalid (mnot (mexists_ind (fun (U:mu)=> (mexists_ind (fun (V:mu)=> (mexists_ind (fun (W:mu)=> (mexists_ind (fun (X:mu)=> ((mand (hollywood U)) ((mand (city U)) ((mand (event V)) ((mand (chevy W)) ((mand (car W)) ((mand (white W)) ((mand (dirty W)) ((mand (old W)) ((mand (street X)) ((mand (way X)) ((mand (lonely X)) ((mand ((barrel V) W)) ((mand ((down V) X)) ((in V) U)))))))))))))))))))))))):Prop
% Parameter mu_DUMMY:mu.
% Parameter fofType_DUMMY:fofType.
% We need to prove ['(mvalid (mnot (mexists_ind (fun (U:mu)=> (mexists_ind (fun (V:mu)=> (mexists_ind (fun (W:mu)=> (mexists_ind (fun (X:mu)=> ((mand (hollywood U)) ((mand (city U)) ((mand (event V)) ((mand (chevy W)) ((mand (car W)) ((mand (white W)) ((mand (dirty W)) ((mand (old W)) ((mand (street X)) ((mand (way X)) ((mand (lonely X)) ((mand ((barrel V) W)) ((mand ((down V) X)) ((in V) U))))))))))))))))))))))))']
% Parameter mu:Type.
% Parameter fofType:Type.
% Parameter qmltpeq:(mu->(mu->(fofType->Prop))).
% Definition meq_prop:=(fun (X:(fofType->Prop)) (Y:(fofType->Prop)) (W:fofType)=> (((eq Prop) (X W)) (Y W))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mnot:=(fun (Phi:(fofType->Prop)) (W:fofType)=> ((Phi W)->False)):((fofType->Prop)->(fofType->Prop)).
% Definition mor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop)) (W:fofType)=> ((or (Phi W)) (Psi W))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mbox:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((R W) V)->False)) (Phi V)))):((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop))).
% Definition mforall_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop))) (W:fofType)=> (forall (P:(fofType->Prop)), ((Phi P) W))):(((fofType->Prop)->(fofType->Prop))->(fofType->Prop)).
% Definition mtrue:=(fun (W:fofType)=> True):(fofType->Prop).
% Definition mfalse:=(mnot mtrue):(fofType->Prop).
% Definition mand:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mor (mnot Phi)) (mnot Psi)))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mimplies:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Phi)) Psi)):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mimplied:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mor (mnot Psi)) Phi)):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mequiv:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> ((mand ((mimplies Phi) Psi)) ((mimplies Psi) Phi))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mxor:=(fun (Phi:(fofType->Prop)) (Psi:(fofType->Prop))=> (mnot ((mequiv Phi) Psi))):((fofType->Prop)->((fofType->Prop)->(fofType->Prop))).
% Definition mdia:=(fun (R:(fofType->(fofType->Prop))) (Phi:(fofType->Prop))=> (mnot ((mbox R) (mnot Phi)))):((fofType->(fofType->Prop))->((fofType->Prop)->(fofType->Prop))).
% Parameter exists_in_world:(mu->(fofType->Prop)).
% Axiom nonempty_ax:(forall (V:fofType), ((ex mu) (fun (X:mu)=> ((exists_in_world X) V)))).
% Definition mforall_ind:=(fun (Phi:(mu->(fofType->Prop))) (W:fofType)=> (forall (X:mu), (((exists_in_world X) W)->((Phi X) W)))):((mu->(fofType->Prop))->(fofType->Prop)).
% Definition mexists_ind:=(fun (Phi:(mu->(fofType->Prop)))=> (mnot (mforall_ind (fun (X:mu)=> (mnot (Phi X)))))):((mu->(fofType->Prop))->(fofType->Prop)).
% Definition mexists_prop:=(fun (Phi:((fofType->Prop)->(fofType->Prop)))=> (mnot (mforall_prop (fun (P:(fofType->Prop))=> (mnot (Phi P)))))):(((fofType->Prop)->(fofType->Prop))->(fofType->Prop)).
% Definition mreflexive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((R S) S))):((fofType->(fofType->Prop))->Prop).
% Definition msymmetric:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (((R S) T)->((R T) S)))):((fofType->(fofType->Prop))->Prop).
% Definition mserial:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((R S) T))))):((fofType->(fofType->Prop))->Prop).
% Definition mtransitive:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R T) U))->((R S) U)))):((fofType->(fofType->Prop))->Prop).
% Definition meuclidean:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((R T) U)))):((fofType->(fofType->Prop))->Prop).
% Definition mpartially_functional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->(((eq fofType) T) U)))):((fofType->(fofType->Prop))->Prop).
% Definition mfunctional:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType), ((ex fofType) (fun (T:fofType)=> ((and ((R S) T)) (forall (U:fofType), (((R S) U)->(((eq fofType) T) U)))))))):((fofType->(fofType->Prop))->Prop).
% Definition mweakly_dense:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType), (fofType->(((R S) T)->((ex fofType) (fun (U:fofType)=> ((and ((R S) U)) ((R U) T)))))))):((fofType->(fofType->Prop))->Prop).
% Definition mweakly_connected:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((or ((or ((R T) U)) (((eq fofType) T) U))) ((R U) T))))):((fofType->(fofType->Prop))->Prop).
% Definition mweakly_directed:=(fun (R:(fofType->(fofType->Prop)))=> (forall (S:fofType) (T:fofType) (U:fofType), (((and ((R S) T)) ((R S) U))->((ex fofType) (fun (V:fofType)=> ((and ((R T) V)) ((R U) V))))))):((fofType->(fofType->Prop))->Prop).
% Definition mvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), (Phi W))):((fofType->Prop)->Prop).
% Definition msatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> (Phi W)))):((fofType->Prop)->Prop).
% Definition mcountersatisfiable:=(fun (Phi:(fofType->Prop))=> ((ex fofType) (fun (W:fofType)=> ((Phi W)->False)))):((fofType->Prop)->Prop).
% Definition minvalid:=(fun (Phi:(fofType->Prop))=> (forall (W:fofType), ((Phi W)->False))):((fofType->Prop)->Prop).
% Parameter rel_s4:(fofType->(fofType->Prop)).
% Definition mbox_s4:=(fun (Phi:(fofType->Prop)) (W:fofType)=> (forall (V:fofType), ((or (((rel_s4 W) V)->False)) (Phi V)))):((fofType->Prop)->(fofType->Prop)).
% Definition mdia_s4:=(fun (Phi:(fofType->Prop))=> (mnot (mbox_s4 (mnot Phi)))):((fofType->Prop)->(fofType->Prop)).
% Axiom a1:(mreflexive rel_s4).
% Axiom a2:(mtransitive rel_s4).
% Axiom cumulative_ax:(forall (X:mu) (V:fofType) (W:fofType), (((and ((exists_in_world X) V)) ((rel_s4 V) W))->((exists_in_world X) W))).
% Parameter vehicle:(mu->(fofType->Prop)).
% Parameter transport:(mu->(fofType->Prop)).
% Parameter instrumentality:(mu->(fofType->Prop)).
% Parameter artifact:(mu->(fofType->Prop)).
% Parameter location:(mu->(fofType->Prop)).
% Parameter object:(mu->(fofType->Prop)).
% Parameter new:(mu->(fofType->Prop)).
% Parameter eventuality:(mu->(fofType->Prop)).
% Parameter abstraction:(mu->(fofType->Prop)).
% Parameter man:(mu->(fofType->Prop)).
% Parameter male:(mu->(fofType->Prop)).
% Parameter female:(mu->(fofType->Prop)).
% Parameter woman:(mu->(fofType->Prop)).
% Parameter proposition:(mu->(fofType->Prop)).
% Parameter drs:(mu->(fofType->Prop)).
% Parameter entity:(mu->(fofType->Prop)).
% Parameter owner:(mu->(fofType->Prop)).
% Parameter human:(mu->(fofType->Prop)).
% Parameter nonhuman:(mu->(fofType->Prop)).
% Parameter have:(mu->(mu->(mu->(fofType->Prop)))).
% Parameter of:(mu->(mu->(fofType->Prop))).
% Parameter partof:(mu->(mu->(fofType->Prop))).
% Parameter in:(mu->(mu->(fofType->Prop))).
% Parameter down:(mu->(mu->(fofType->Prop))).
% Parameter barrel:(mu->(mu->(fofType->Prop))).
% Parameter lonely:(mu->(fofType->Prop)).
% Parameter way:(mu->(fofType->Prop)).
% Parameter street:(mu->(fofType->Prop)).
% Parameter old:(mu->(fofType->Prop)).
% Parameter dirty:(mu->(fofType->Prop)).
% Parameter white:(mu->(fofType->Prop)).
% Parameter car:(mu->(fofType->Prop)).
% Parameter chevy:(mu->(fofType->Prop)).
% Parameter event:(mu->(fofType->Prop)).
% Parameter city:(mu->(fofType->Prop)).
% Parameter hollywood:(mu->(fofType->Prop)).
% Axiom reflexivity:(mvalid (mforall_ind (fun (X:mu)=> ((qmltpeq X) X)))).
% Axiom symmetry:(mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> ((mimplies ((qmltpeq X) Y)) ((qmltpeq Y) X))))))).
% Axiom transitivity:(mvalid (mforall_ind (fun (X:mu)=> (mforall_ind (fun (Y:mu)=> (mforall_ind (fun (Z:mu)=> ((mimplies ((mand ((qmltpeq X) Y)) ((qmltpeq Y) Z))) ((qmltpeq X) Z))))))))).
% Axiom abstraction_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (abstraction A))) (abstraction B))))))).
% Axiom artifact_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (artifact A))) (artifact B))))))).
% Axiom barrel_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((barrel A) C))) ((barrel B) C))))))))).
% Axiom barrel_substitution_2:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((barrel C) A))) ((barrel C) B))))))))).
% Axiom car_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (car A))) (car B))))))).
% Axiom chevy_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (chevy A))) (chevy B))))))).
% Axiom city_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (city A))) (city B))))))).
% Axiom dirty_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (dirty A))) (dirty B))))))).
% Axiom down_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((down A) C))) ((down B) C))))))))).
% Axiom down_substitution_2:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((down C) A))) ((down C) B))))))))).
% Axiom drs_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (drs A))) (drs B))))))).
% Axiom entity_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (entity A))) (entity B))))))).
% Axiom event_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (event A))) (event B))))))).
% Axiom eventuality_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (eventuality A))) (eventuality B))))))).
% Axiom female_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (female A))) (female B))))))).
% Axiom have_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> (mforall_ind (fun (D:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (((have A) C) D))) (((have B) C) D))))))))))).
% Axiom have_substitution_2:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> (mforall_ind (fun (D:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (((have C) A) D))) (((have C) B) D))))))))))).
% Axiom have_substitution_3:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> (mforall_ind (fun (D:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (((have C) D) A))) (((have C) D) B))))))))))).
% Axiom hollywood_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (hollywood A))) (hollywood B))))))).
% Axiom human_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (human A))) (human B))))))).
% Axiom in_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((in A) C))) ((in B) C))))))))).
% Axiom in_substitution_2:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((in C) A))) ((in C) B))))))))).
% Axiom instrumentality_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (instrumentality A))) (instrumentality B))))))).
% Axiom location_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (location A))) (location B))))))).
% Axiom lonely_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (lonely A))) (lonely B))))))).
% Axiom male_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (male A))) (male B))))))).
% Axiom man_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (man A))) (man B))))))).
% Axiom new_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (new A))) (new B))))))).
% Axiom nonhuman_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (nonhuman A))) (nonhuman B))))))).
% Axiom object_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (object A))) (object B))))))).
% Axiom of_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((of A) C))) ((of B) C))))))))).
% Axiom of_substitution_2:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((of C) A))) ((of C) B))))))))).
% Axiom old_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (old A))) (old B))))))).
% Axiom owner_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (owner A))) (owner B))))))).
% Axiom partof_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((partof A) C))) ((partof B) C))))))))).
% Axiom partof_substitution_2:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> (mforall_ind (fun (C:mu)=> ((mimplies ((mand ((qmltpeq A) B)) ((partof C) A))) ((partof C) B))))))))).
% Axiom proposition_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (proposition A))) (proposition B))))))).
% Axiom street_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (street A))) (street B))))))).
% Axiom transport_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (transport A))) (transport B))))))).
% Axiom vehicle_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (vehicle A))) (vehicle B))))))).
% Axiom way_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (way A))) (way B))))))).
% Axiom white_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (white A))) (white B))))))).
% Axiom woman_substitution_1:(mvalid (mforall_ind (fun (A:mu)=> (mforall_ind (fun (B:mu)=> ((mimplies ((mand ((qmltpeq A) B)) (woman A))) (woman B))))))).
% Axiom ax1:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (chevy U)) (car U))))).
% Axiom ax2:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (car U)) (vehicle U))))).
% Axiom ax3:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (vehicle U)) (transport U))))).
% Axiom ax4:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (transport U)) (instrumentality U))))).
% Axiom ax5:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (instrumentality U)) (artifact U))))).
% Axiom ax6:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (instrumentality U)) (mnot (way U)))))).
% Axiom ax7:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (street U)) (way U))))).
% Axiom ax8:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (way U)) (artifact U))))).
% Axiom ax9:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (artifact U)) (object U))))).
% Axiom ax10:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (artifact U)) (mnot (location U)))))).
% Axiom ax11:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (event U)) (eventuality U))))).
% Axiom ax12:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (hollywood U)) (city U))))).
% Axiom ax13:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (city U)) (location U))))).
% Axiom ax14:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (location U)) (object U))))).
% Axiom ax15:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (object U)) (entity U))))).
% Axiom ax16:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (old U)) (mnot (new U)))))).
% Axiom ax17:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (eventuality U)) (mnot (entity U)))))).
% Axiom ax18:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (abstraction U)) (mnot (entity U)))))).
% Axiom ax19:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (abstraction U)) (mnot (eventuality U)))))).
% Axiom ax20:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (male U)) (mnot (female U)))))).
% Axiom ax21:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (man U)) (mnot (woman U)))))).
% Axiom ax22:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (man U)) (male U))))).
% Axiom ax23:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (male U)) (human U))))).
% Axiom ax24:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (female U)) (human U))))).
% Axiom ax25:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (woman U)) (female U))))).
% Axiom ax26:(mvalid (mforall_ind (fun (U:mu)=> ((mequiv (drs U)) (proposition U))))).
% Axiom ax27:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (nonhuman U)) (entity U))))).
% Axiom ax28:(mvalid (mforall_ind (fun (U:mu)=> ((mimplies (human U)) (mnot (nonhuman U)))))).
% Axiom ax29:(mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> (mforall_ind (fun (W:mu)=> ((mequiv ((mand (((have U) V) W)) (human V))) ((mand (owner V)) ((of V) W)))))))))).
% Axiom ax30:(mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> (mforall_ind (fun (W:mu)=> ((mimplies ((mand (((have U) V) W)) ((mand (nonhuman V)) (nonhuman W)))) ((partof W) V))))))))).
% Axiom ax31:(mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> (mforall_ind (fun (W:mu)=> ((mimplies ((mand (event U)) (((have U) V) W))) ((of V) W))))))))).
% Axiom ax32:(mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> ((mimplies ((of V) U)) (mexists_ind (fun (W:mu)=> ((mand (event W)) (((have W) U) V)))))))))).
% Axiom ax33:(mvalid (mforall_ind (fun (U:mu)=> (mforall_ind (fun (V:mu)=> (mforall_ind (fun (W:mu)=> ((mimplies ((mand ((partof U) V))
% EOF
%------------------------------------------------------------------------------